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概要
テンソル圏 C に対し, 環上の加群の類似として C -加群圏が定義される. 共形場理論への応用
などを動機として, C -加群圏の相対セール関手およびピボタル構造が定義されている. 本研究で
は, C を 1 の奇数乗根 q に対する小さな量子群 uq(sl2) の表現圏とするとき, C -加群圏に対し
てこれらの構造を計算する. 応用として, C における単純対称フロベニウス代数の具体例を構成
する.

1 導入
本講演では, 清水健一氏（芝浦工業大学）, 柴田大樹氏（岡山理科大学）および中村大祐氏（岡山理

科大学）との共同研究である.

テンソル圏の理論は, 数学と物理学の両方において重要な役割を果たしている. 特に, テンソル圏
C に対する C -加群圏は, 共形場理論の構造を理解する上で不可欠な道具となっている.

C -加群圏の理論において重要な構造として, 相対セール関手とピボタル構造が挙げられる. 相対
セール関手は加群圏におけるテンソル圏における二重双対を一般化する関手であり, テンソル圏にお
いてはピボタル構造というものが考えられるが, 同名の概念が相対セール関手を用いて, 完全 C -加群
圏に対して考えられる.

本研究では, C を 1の奇数乗根 q に対する小さな量子群 uq(sl2)の表現圏とするとき, C -加群圏に
対する相対セール関手とピボタル構造を具体的に計算する. さらに, 得られた結果の応用として,C に
おける単純対称フロベニウス代数の具体例を構成する.

2 準備
主結果を説明するために必要な知識や記号を本節で記述する. 基礎体を複素数体 Cとする. 圏論に

関する基本的な事柄は仮定する.

2.1 有限テンソル圏とその加群 [TV]

モノイド圏は圏 C であって,
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• モノイド積という関手 ⊗ : C × C → C ;

• 単位対象という対象 1 ∈ Ob(C );

• 結合律という自然同型の族 a = {aX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)}X,Y,Z∈Ob(C );

• 左単位律という自然同型の族 ℓ = {ℓX : 1⊗X → X}X∈Ob(C );

• 右単位律という自然同型の族 r = {rX : X ⊗ 1 → X}X∈Ob(C )

を備えているものであって, 五角形公理と三角形公理を満たすものである. マックレーンのコヒーレ
ンス定理により, 自然同型 a, ℓと r は恒等射であると仮定して良い.

C をモノイド圏とする. 対象X ∈ C の左双対対象を ∨X と書き,左評価と呼ばれる非退化ペアリン
グ evX : ∨X⊗X → 1およぶ左余評価と呼ばれる射 coevX : 1 → X⊗∨X と共に (∨X, evX , coevX)

の組である. 同じように, X の右双対対象 (X∨, ẽvX : X ⊗X∨ → 1, c̃oevX : 1 → X∨ ⊗X)は定
義できる. 任意の対象 X ∈ C が左双対対象と右双対対象を持つとき, C は剛性的という.

有限次元代数の有限次元表現のなす圏と同値であるような圏を有限アーベル圏という. 有限テンソ
ル圏は剛性的なモノイド圏の構造を持つ有限アーベル圏であって, 以下の条件を満たすもののことで
ある.

• 単位対象 1は単純対象であり;

• モノイド積 ⊗は双線形関手であり；
• EndC (1) ∼= Cを満たす.

左 C -加群圏とは, 同型を除いて結合的かつ単位的な作用とよばれる関手 ⊗ : C ×M → Mが与え
られているような圏Mである. (正確な定義は [EGNO]参照)

有限テンソル圏 C に対して, 有限左 C -加群圏とは左 C -加群圏の構造を備えた有限アーベル圏M
であって, 作用 ⊗ : C ×M → Mが双線形かつ各変数について完全であるようなものである. 有限左
C -加群圏Mに対して, 内部 Hom関手 Hom: Mop ×M → C が次の自然同型が存在するような同
型を除いて一意的な関手として定義される.

HomM(X ⊗M,N) ∼= HomC (X,Hom(M,N)) (X ∈ C , M,N ∈ M).

さらに, L,M,N ∈ Mに対して次の結合律と単位律を満たす射

Hom(M,N)⊗Hom(L,M) → Hom(L,N)

が存在する. 完全左 C -加群圏は有限左 C -加群圏Mであって, 全ての対象M ∈ Mと全ての射影的
対象 P ∈ C に対して P ⊗M が射影的であるようなもののことである.

2.2 相対セール関手 [Shi]

定義 1. C を有限テンソル圏とし, Mを作用 ⊗と内部 Hom関手 Homを備えた完全左 C -加群圏と
する. 相対セール関手 S : M → Mは次の自然同型が存在するような同型を除いて一意的な関手とし
て定義される.

∨Hom(M,N) ∼= Hom(N, S(M)) (M,N ∈ M)



さらに, 次の自然同型が存在して, Sは「捻られた」左 C -加群関手になる.

ξX,M : ∨∨X ⊗ S(M) → S(X ⊗M) (X ∈ C , M ∈ M) (♠)

2.3 対称フロベニウス代数
剛性的なモノイド圏を C と書く. C における代数とは, 対象 A ∈ C と二つの射 µ : A ⊗ A → A,

η : 1 → Aの組であって, これらが結合律および単位律を満たすものをいう. 一方, C の双対圏 C op

を考えると, C における余代数の概念が得られる. すなわち, 余代数とは対象 C ∈ C と二つの射
∆: C → C ⊗ C, ε : C → 1の組であって, これらが余結合律および余単位律を満たすものをいう.

代数 Aのフロベニウス形式は同型射

(λµ⊗ id∨A)(idA ⊗ coevA) : A → ∨A (♥)

を満たすような射 λ : A → 1 である. フロベニウス代数はフロベニウス形式を持つ代数である. C

上のモノイド自己同値が割当 X 7→ ∨∨X から定義される. C のピボタル構造はモノイド関手の同型
pX : X → ∨∨X (X ∈ C )である. ピボタルモノイド圏は剛性的なモノイド圏であってピボタル構
造を備えているものである.

定義 2. C をピボタル構造 pを備えたピボタル有限テンソル圏とする.

Aを C の代数とし, λ : A → 1を A上のフロベニウス形式とする. (♥)より ϕ : A → ∨Aを定義
し, Aの中山自己同型 νA を νA = ϕ−1 ◦ ∨ϕ ◦ pA で定義する. νA = idA ならば, λは（ピボタル構造
pに関して）対称的であるという. 対称フロベニウス代数は対称的フロベニウス形式を備えている代
数である.

備考. 一般的なフロベニウス代数と対称フロベニウス代数の定義は C = Vect (有限次元線形空間の
圏)の場合で復元することができる.

2.4 ピボタル加群圏
定義 3. C をピボタル構造 pを備えたピボタル有限テンソル圏とする. Mは完全左 C -加群圏とし,

SをMの相対セール関手とする. Mのピボタル構造は自然同型 p̃ : idM → Sであり, 次の図式を可
換とするものである.

X ⊗M
p̃X⊗M //

pX⊗p̃M &&

S(X ⊗M)

∨∨X ⊗ S(M)

ξX,M
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ただし, ξX,M は前小節で述べた相対セール関手のための標準的同型 (♠)である.



3 ホップ代数の場合
H を C上の線形空間とする. H がホップ代数とは, 線形写像 µ, η,∆, ε が存在して, 結合律, 単位

律, 余結合律と余単位律を満たし, さらに

µ(S ⊗ id)∆ = µε = m(id⊗ S)∆

を満たすような対合射と呼ばれる線型射 S : H → H が存在するときをいう. スウィードラー記号は
簡潔にするために使う記号である. 例えば, ∆(c) = c(1)⊗ c(2) と∆(c(1))⊗ c(2) = c(1)⊗ c(2)⊗ c(3) =

c(1) ⊗∆(c(2))など.

左 H-余加群代数とは左 H-余加群の圏における代数である. H を有限次元ホップ代数とし, 有限次
元左 H-余加群代数で余作用 δA を持つものを Aと書く. スウィードラー記号と似てる記号を用いて
Aにおける H の余作用を表記する.

δA(a) = a(−1) ⊗ a(0) (a ∈ A).

有限次元左 A-加群圏 Rep(A) は Rep(H) 上の有限左加群圏で, 作用は次のように定義される.

X ∈ Rep(H)とM ∈ Rep(A)に対して, X ⊗M ∈ Rep(A)は C上の X とM のテンソル積で, 左
A-作用を次で定義する.

a · (x⊗m) = a(−1)x⊗ a(0)m (a ∈ A, x ∈ X, m ∈ M).

補題 4. M,N ∈ Rep(A)とする. 内部 Hom関手は, 線形空間としては

Hom(M,N) = HomA(H ⊗M,N)

であたえられる. ここで, H ⊗M は

a · (h⊗m) = a(−1)h⊗ a(0)m (a ∈ A, h ∈ H, m ∈ M)

によって左 A-加群とみる. また, H の Hom(M,N)への作用は

(h ▷ f)(x⊗m) = f(xh⊗m) (h, x ∈ H, f ∈ Hom(M,N), m ∈ M).

で与えられる.

L,M,N ∈ Rep(A)に対して, 合成律 comp: Hom(M,N)⊗Hom(L,M) → Hom(L,N)は

comp(f ⊗ g)(h⊗ ℓ) = f(h(1) ⊗ g(h(2) ⊗ ℓ)) (f ∈ Hom(M,N), g ∈ Hom(L,M), h ∈ H, ℓ ∈ L)

によって定められた.

3.1 相対セール関手について
H を有限次元ホップ代数とし, Aを完全左 H-余加群代数とする. すなわち, Aは有限次元左 H-余

加群代数で, Rep(A)は Rep(H)上の完全左加群圏である. 相対セール関手は前の小節で紹介したが,

一般式は扱いにくいため, Aが以下の群的余積分を備えてるときを考える.



定義 5. ホップ代数H の群的元の集まり（実はこれが群になる）を G(H)と書く. g ∈ G(H)に対し
て, Aにおける g-余積分とは a(−1)λ(a(0)) = λ(a)g であるような線形写像 λ : A → Cである. Aに
おける群的余積分とはある g ∈ G(H)に対する g-余積分である.

ホップ代数学に関する記号や専門用語をここで導入する. H の右積分とは全ての h ∈ H に対して
Λh = ε(h)Λを満たすような H の元 Λである. H における右モジュラー関数とは全ての h ∈ H に
対して hΛ = αH(h)Λを満たすような代数射 αH : H → C, ただし Λは H での固定した非ゼロ右積
分. 標準的同型 H ∼= ∨∨H により, 双対ホップ代数 ∨H の右モジュラー関数 α∨H ∈ ∨∨H と対応して
る H の元を gH と定義する. 同値に, gH が全ての h ∈ H に対して h(1)λ(h(2)) = λ(h)gH , ただし λ

は ∨H の右積分である.

定理 6. H と Aは上記の通り設定する. 群的元 gA ∈ G(H)と Aにおける gA-余積分 λA が存在し,

λA は圏 Vectで Aにおけるフロベニウス形式となていることを仮定する. νA をフロベニウス形式
λA に関する Aの中山自己同型とする. すなわち, 線形射 νA : A → Aを次の式により定まる.

λA(ba) = λA(νA(a)b) (a, b ∈ A). (♣)

さらに, 代数自己同型 ν′A : A → Aを定義する.

ν′A : A
νA // A

δA // H ⊗A
αH⊗idA // A.

このとき, 相対セール関手 S : Rep(A) → Rep(A)は次のように与えられる. 線形空間として, 全ての
M ∈ Rep(A)に対して S(M) = M である. Aによる S(M)への新たな作用 ▷は

a ▷ m = ν′A(a) ·M m (a ∈ A, m ∈ M),

ここで, ·M は元々の A から M への作用である. 標準的同型 (♠) は次のように与えられる.

x ∈ X ∈ Rep(H)とm ∈ M ∈ Rep(A)に対し,

ξX,M : ∨∨X ⊗ S(M) → S(X ⊗M) ϕX(x)⊗m 7→ g−1
H gAx⊗m,

ここで, ϕX : X → ∨∨X は線形空間における標準的同型である.

全ての h ∈ H に対して S2(h) = ghg−1 となるような群的元 g を H のピボタル元という. 今, 一
つのピボタル元 gpiv ∈ G(H)を固定し, gpiv から誘導されたピボタル構造が備えてる Rep(H)を考
える.

定理 7. 定理 6の記号の設定と同じとする. Rep(A)におけるピボタル構造の集合と Aの可逆元 g̃ で
あって次の条件を満たすものとの間に全単射が存在する.

δA(g̃) = g−1
H gAgpiv ⊗ g̃　かつ　g̃ag̃−1 = ν′A(a) (a ∈ A). (♦)

(♦) を満たす可逆元 g̃ ∈ A が与えられたとする, その対応してるピボタル構造 p̃ は m ∈ M ∈
Rep(A)に対して p̃M (m) = g̃mで与えられる.

定義 8. Aのピボタル元とは (♦)を満たす Aの可逆元である.



備考.

• (♦)において g−1
H , gA と gpiv の順番は任意である. 何故なら, gpiv と gH は群 G(H)の中心に

属する. gpiv の中心性は全ての x ∈ G(H)に対して S2(x) = xから従う.

• αH = εならばホップ代数 H はユニモジュラという. H はユニモジュラならば, ν′A = νA で
ある.

4 Rep(uq(sl2))上のピボタル完全加群圏
4.1 小さな量子群 uq(sl2)

N を 1より大きい奇数とし, q を 1の原始 N 乗根とする. uq(sl2)は E, F , K から生成される代
数で, 以下の基本関係式を満たす:

KE = q2EK, KF = q−2FK, KN = 1, EN = FN = 0, EF − FE =
K −K−1

q − q−1
.

uq(sl2)はホップ代数構造を持ち, 余積 ∆, 余単位 εと対合射 S が以下のように定義する:

∆(E) = E ⊗K + 1⊗ E, ε(E) = 0, S(E) = −K−1E,

∆(F ) = F ⊗ 1 +K−1 ⊗ F , ε(F ) = 0, S(F ) = −FK−1,

∆(K) = K ⊗K, ε(K) = 1, S(K) = K−1.

以降, H := uq(sl2)と書く. 便宜上, x = K−1E, y = (q − q−1)F と g = K とする. このとき,

xN = yN = 0, gN = 1, gxg−1 = q2x, gyg−1 = q−2y, xy − q−2yx = 1− g2,

∆(g) = g ⊗ g, ∆(z) = z ⊗ 1 + g−1 ⊗ z (z ∈ {x, y}).

元 Λ =

N−1∑
i=0

gixN−1yN−1 は H の左積分かつ右積分である. したがって, H はユニモジュラであ

る. 線形射 λ : H → kを以下のように定義する, 但し δ はクロネッカーのデルタである.

λ(gixjyk) = δi,0δj,N−1δk,N−1.

補題 9. 全ての h ∈ H に対して h(1)λ(h(2)) = λ(h)g2 である. つまり, λは H における非ゼロ右余
積分である.

証明. i, j, k ∈ {0, 1, · · · , N − 1}に対して, q-二項定理より,

(λ⊗ idH)∆(gixjyk) =

j∑
r=0

k∑
s=0

(
j

r

)
q−2

(
k

s

)
q2

〈
λ, gi−r−sxj−ryk−s

〉
gixjyk.

変数 i, j, rと sの範囲によって, j = k = N − 1かつ i = r = s = 0に限り 〈
λ, gi−r−sxj−ryk−s

〉が
非ゼロである. したがって,

(λ⊗ idH)∆(gixjyk) = δi,0δj,N−1δk,N−1 = λ(gixjyk),



つまり, λは H における右余積分である. 同様に,

(idH ⊗ λ)∆(gixjyk) =

j∑
r=0

k∑
s=0

(
j

r

)
q−2

(
k

s

)
q2
gi−r−sxj−ryk−s

〈
λ, gixjyk

〉
=

j∑
r=0

k∑
s=0

(
j

r

)
q−2

(
k

s

)
q2
δi,0δr,N−1δs,N−1g

i−r−sxj−ryk−s

= δi,0δj,N−1δk,N−1g
2 = λ(gixjyk)g2.

したがって, gH = g2. 小さな量子群 uq(sl2)は一意的なピボタル元 gpiv = g が存在する.

補題 10 (定理 7の H = uq(sl2)の場合). Aを余作用 δA を備えて完全左 H-余加群代数とする. 群
的元 gA ∈ G(H)と Aにおける gA-余積分かつフロベニウス形式 λA が存在する. そこで Aのピボタ
ル元は下記の条件を満たすような可逆元 g̃ ∈ A,,

δA(g̃) = g−1gA ⊗ g̃ かつ g̃ag̃−1 = νA(a) (a ∈ A),

ただし νA は (♣)による Aの中山自己同型である.

4.2 完全 H-余加群代数
定理 11. [NSS] Rep(uq(sl2))上の直既約完全加群は Rep(A)と同値である. ここで Aは下の表の中
のいずれかである.

左 uq(sl2)余加群代数 関係式
A0(r) = 〈G〉 Gr = 1

A1(r; ξ) = 〈G,X〉 Gr = 1, XN = ξ,GX = q2N/rXG

A2(r; ζ) = 〈G,Y 〉 Gr = 1, Y N = ζ,GY = q−2N/rY G

A3(r; ξ, ζ, η) = 〈G,X, Y 〉 XY − q2Y X = 1− ηG−2, かつ A1 と A2 の関係式

A4(α, β;ω) = 〈W 〉
(N−1)/2∑

k=0

N

N − k

(
N − k

k

)(
αβ

q2 − 1

)k

WN−2k = ω

ただし, r | N かつ α, β, η, ξ, ζ, ω ∈ C とする. 上記のリストの余作用は以下のように定義する.

X 7→ x⊗ 1 + g−1 ⊗X, Y 7→ y ⊗ 1 + g−1 ⊗ Y,

G 7→ g
N
r ⊗G, W 7→ (αx+ βy)⊗ 1 + g−1 ⊗W.

5 主結果
定理 12. Rep(uq(sl2))上の直既約ピボタル完全加群は Rep(A)と同値であり, Aは下記のいずれの
左 uq(sl2)-余加群代数である.

A0(N), A1(1; ξ), A2(1; ξ), A3(N ; ξ, ζ, η), A4(α, β; 1)



これから定理を証明する.

5.1 A0 の場合
i ∈ {0, 1, · · · , r − 1} に対して, (id ⊗ λA)∆(Gi) = gi

N
r λA(G

i) = λA(G
i)gA. i の範囲によって,

i = 0に限り λA(G
i)が非ゼロである. したがって, (id⊗ λA)∆(Gi) = δi,0, つまり, gA = 1である.{

g̃ag̃−1 = νA(a) = a

δA(g̃) = g−1gA ⊗ g̃ = g−1 ⊗ g̃

これより, iNr ≡ −1 (mod N)で, ピボタル構造が存在するならば N
r = 1, つまり r = N . したがっ

て, g̃ = G−1 である.

5.2 A1 の場合
i ∈ {0, 1, · · · , r − 1}と j ∈ {0, 1, · · · , N − 1}に対して,

(id⊗ λA)∆(GiXj) =

j∑
m=0

(
j

m

)
q2
q2m(m−j)gi

N
r +m−jxmλA(G

iXj)

j の範囲によって, j = N − 1に限り λA(G
iXj)が非ゼロである. したがって, (id⊗ λA)∆(GiXj) =

δi,0δj,N−1g, つまり, gA = g である. 生成元 Gと X の中山自己同型の計算は以下のフロベニウス形
式を比べる.

λA(G
iXj ·G) と λA(G ·GiXj) λA(G

iXj ·X) と λA(X ·GiXj)

λA(G
iXj ·G) = q−

2N
r jλA(G

i+1Xj)

= q−
2N
r jδi+1,0δj,N−1

= q
2N
r δi+1,0δj,N−1

λA(G ·GiXj) = δi+1,0δj,N−1

ゆえに, νA(G) = q
2N
r G. 一方で,

λA(G
iXj ·X) = δi,0δj+1,N−1

λA(X ·GiXj) = q−
2N
r iλA(G

iXj+1)

= δi,0δj+1,N−1

ゆえに, νA(X) = X. 次はピボタル元を探す.{
g̃ag̃−1 = νA(a)

δA(g̃) = g−1gA ⊗ g̃ = 1⊗ g̃

これより, −2N
r ≡ 0 (mod N)で, ピボタル構造が存在するならば N

r = 1, つまり r = N . したがっ
て, g̃ = 1である.



5.3 A2 の場合
A1 の場合と同じ計算だが, 符号は注意が必要だ. 同じ計算を省略して, 結果だけ記述する. 群的元

gA = g

生成元 Gと Y の中山自己同型

νA : A → A,
G 7→ q−2G
Y 7→ Y

ピボタル元
g̃ = 1

5.4 A3 の場合
A3 の場合は場合分けして計算必要ので, 最終結果のみ記載する.

群的元
gA = g2

生成元 G, X と Y の中山自己同型

νA : A → A,
G 7→ G
X 7→ q2X
Y 7→ q−2Y

ピボタル元
g̃ = G

5.5 A4 の場合
A0 の場合と似てる計算だが, 議論は少し違う. 結果のみ記載する.

gA = g, νA = idA, g̃ = 1
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